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The approach

» Three viewpoints

»Policy maker: Assessments leading to long
term strategic choice (e.g. where to prioritise
Investment)

»Infrastructure manager: Detalled
assessment of local effects on specific
infrastructure for different weather events
(e.g. landslip, flooding)

» Traveller: Calculation of journey resilience of
a route (e.g. London-Glasgow) rURE



Capacity vs. Demand

» Capacity reduction occurs due to
aggregation of physical processes
Impacting on each asset element at a
specific time

»Demand is a function of the user
requirements and behaviour (i.e. time of
journey, social and economic factors)

» For 2050, both are influenced by possible

futures.... %ﬂs
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Limit states for performance

« Ultimate limit state (ULS)

» Operator: Complete loss of function e.g. road/rall
route impassable — zero capacity

» User: Journey is not completed or cumulative delay
makes the journey a failure as activity is cancelled
« Serviceability limit states (SLS)

» Operator: Reduced function e.g. lane of motorway
closed or surface conditions result in lower speed of
vehicles — reduction in capacity

» User:. Extended journey time causes disruption to
plans but journey is completed in time to allow activity

to take place in some form %ﬂf
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Weather drivers

» Climate variables (current and forecast)
» Rainfall, temperature, wind, combined actions

» Possible futures will influence: Duration,
Intensity and quantity

» Manifestation of weather events

» Fluvial and pluvial flow (depth, velocity),
groundwater (pressure), air and material
temperature (intensity and flux), air speed

(velocity)
UTURE



Physical processes

» Physical processes resulting from weather

»Ponding, pluvial flow, fluvial flow, ground
volume change, thermal straining, wind
pressure

»Conditioning parameters: Infrastructure
condition, topographic setting, ground
conditions

ULURE
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Topography

1 — position along base of slope

2 — position on high ground/top of slope

3 — cuttings

4 — embankments

5 — position in floodplain . \ 1
6 — slope stability
[ — scour




Effects on Iinfrastructure

» Qutcome events

» Surface water depth leading to flooding and/or
spray, earthwork and foundation deformation,
pavement and track deformations,
scour/erosion, washout, landslide

> User consequences

» Visibility, traction, ride quality, obstruction,
temperature stress

»Reduced physical capacity — reduced

speed/flow ﬁf
NET



Rainfall

1 — rainfall intensity 4 — overland flow 7 — scour
2 — visibility issues 5 — groundwater flow 8 — flooding (regional)
3 — drainage issues 6 — slope stability 9 — flooding (local)




Temperature

1 — heat stress inside transport modes — road and rail

2 — heat effects on pavements/rails/sub-grade including buckling, rutting,
freeze/thaw

3 — soil cracking
4 — swell/shrink
5 — lowering of water levels and local/regional groundwater tables




FUTURENET methodology
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Building a basic Model

Route corridor

> |dentify area of
Interest

> Split into 50 metre AN\
sections

» Buffer each
section to capture
surrounding area
(75m)

» Populate each

buffer with data ?E
NET




Data layers and sources

Digital Terrain Model (DTM)

» Panorama
» Contour 25m

Inland water
Road and ralil

BGS Geology layers
» Bedrock
> Superficial
» Engineering

BGS Geosure

Collapsible

Compressible

Swell-shrink

Landslide obs

Superficial and bedrock permeability

YV V V V V

HA Shape files — Embankments /
Cuttings

>

YV V V V

>

Ditches

Drainage + flood risk
Culverts

Piped grip

Manholes

Gullies

Filter drains

Vegetation

>
>
>

Hedges and Habitats
Species
Grassland

Solar radiation

>

Aspect and intensity (dependent on DTM)

Hydrology

>
>

Flow accumulation
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Weather event sequences:

Temporal scal
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Response times of processes

» Dependent upon the process, different detall is required
» Time of occurrence of weather events is important
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Weather event sequences (WESQs)

» 16 WESQSs for Garstang 2050 High processed
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Combined physical processes

Interactions
»Physical processes are
driven by weather events TE TS TS B WO TG UN T 69 Ot
> These are sequential and

the landscape has a
‘memory’

»Both antecedent and i S |

immediate triggers play a ol u l
role

»\Weather event sequences

therefore enable analysis of . . -
joint occurrences and

process interactions UTURE
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Output — Seasonal landslides
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Output — Track buckling

S )"_\. 74
A~ )

=, ) V
-

x =

=N

:L-"
A
10am

12pm 2pm 4pm 6pm 8pm 10pm

Track buckling — 2 hour temporal scale :@m
N

ET



Capacity reduction factors (CRF)

» Each physical process could result in capacity of
the transport link being reduced

» Capacity reduction factors are derived for each
process

» Aggregation of reduction factors for a specific
weather event gives the combined capacity
reduction

» These can be calculated for each segment of the
Infrastructure at each time interval
UTURE



Capacity reduction factors (CRF)

Visualisation of capacity reduction

 In the vertical - each node along the
Infrastructure section
(1108 nodes for 55km)

 In the horizontal - every hour in the WESQ
(8760 hours for WESQ 02 _029)

Physical capacity 2050 (WESQ 02_029) — Blue is
good, yellow is poor, red is very poor




What can be done with tartans?

|§ :
!

Distance [km]

Things to consider include: Time [hours]
» Persistent nodes of reduced capacity (horizontal
lines)

» Triggers of capacity reduction (vertical lines)
» System recovery versus recurrence of critical

events ws
» Individual processes (next slide) NET



CRF: Individual processes
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. WESQs
Resilience:

Capacity vs.
demand

Resilience is determined by
difference between physical

process capacity and mf
demand

month

day 15 I 1 A Y

Where capacity reduction
occurs and demand is low,
resilience is still high

month FITTTTTTITITIIITIT I IT I I T I T I I I iem

Where capacity reduction
occurs as demand is high

year f

the greatest problems occur
FUTURES



Demand > Capacity — SLS failure

Precipitation Temperature

Junction

Slope Stability  Floeding Road Rutting Track Buckling
Low Intensity Events
Low Probability
Junction
SLS
arcc
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Demand >> Capacity — ULS failure

Precipitation Temperature

Junction

Slope Stability  Flooding Road Rutting Track Buckling
uLs
High Intensity Events
Low Probability
Junction
uLs
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Journey resilience approach

m

N — *%al S% » Model simulates journeys as a
futwes J Inetwor] [survey | () [Users demonstration of concept
UKCPOS! [NR | 5 Combines failure models

| Creaté travel |, . ) ]
» Splits road and rail routes into

scenario
B links (between

A

available? resulting delay on link
No

s ; stations/junctions)

© ' Y .

2 Link Link » Runs four journeys a day

“E’H demand| — supply .

2 —— » Uses synthetic weather to

8 le——|Link travel time| _ )

- ¢ produce failures, capacity and

8 +———{ Link resilience | Vs .

5 speed reductions and calculates
§

» Aggregates link delays
> Uses weather generator output
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350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

Need for coherent weather along
length of asset (London-Glasgow)

—— P
10%
N\ = 72050s Central Estimate

— )
=== 90%

50 100 150 200 250 300 350 400 450 500

Distance from London (km) UZT URE
arcc
NET



Journey resilience approach

Weather-related Physical failure
speed reduction (landslip/flooding)
( J

Failure
threshold
2

Failure
threshold
1

Delay

Distance



Journey resilience output
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Deficiencies in information

» Higher resolution of data — Finer detail DTM
» Road and rail network bed needs identifying on DTM

» Further road detalls (e.g. camber, direction and angle
of road, drainage, types of road surface, previous
engineered interventions)

» Rallway detalls (e.g. track incline and camber, railway
ballast specs)

» Condition of elements (e.g. earthworks, structures,
drainage)

» Spatially coherent weather projections for UK

ULURE
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Methodology for quantifying
system resilience

» Methodology introduced....

» How can it be used to inform policy
makers, infrastructure managers and
traveller experience?

» Over to John Dora......
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