

ARIES: Energy Systems

10th June 2014, ARCC Assembly, Birmingham

Prof Phil Banfill & Prof Gareth Harrison
Centre of Excellence in Sustainable Building Design
Heriot-Watt University.
Institute for Energy Systems, University of Edinburgh.

ARIES

- Adaptation and Resilience In Energy Systems
- University of Edinburgh (supply-side) and Heriot-Watt University (demand-side)
- Modelling the effect of climate and future conditions on energy demand, supply and infrastructure
 - What problems might occur that are caused or exacerbated by climate change?

Climate

Demand-side drivers

Energy generation

Ensure these complement each other

Bottom-up descriptions

Building stock

Behaviour

Micro-gen

HVAC tech

The effect of future scenarios on demand:

Power demand over a 24 hour period

Energy efficient lighting, e.g. LED?

Charge cycle of electric vehicles?

Continuing rise in consumer electronics?

Climate Change?

For this we need quite specific "scenarios"...

- Archetypes of dwellings
 - Scottish Building Stock from Housing Surveys, and how these might change in the future
- Apply these scenarios to "zones" of 500-6000 homes
- Such bottom-up scenarios do not necessarily need to be paired with top-down scenarios
 - But we need to make sure they do not clash with them e.g. avoid high heat pump usage in higher grid carbon intensity scenarios

How can we synthesize electrical demand profiles?

- Individual dwelling demand profiles show a clear link with activity and technologies
- Multi-dwelling demand profiles show periods of interest/concern for an energy supplier
- Can a method utilise both of the above?
 - And demonstrate the effect of changing specific parameters on aggregated demand profiles
 - Particularly a challenge as high-resolution dwelling demand profiles are difficult to obtain in great number

Synthesizing electrical demand profiles

Diversity effect in electrical demand profiles

Aggregated thermal demand profiles

- Developed a method for dynamically simulating large numbers of dwellings (in IES-VE)
- In effect, a Dynamic Local-Scale Stock model (DLSSM)
 - Accounts for important aspects of building physics but in a way that is suitable for extrapolation
 - Can look at effect of, e.g., large-scale changes in heating technology (in a warmer climate)

A local scale stock model

- Zones of Semi-dets, Dets, Terraces, Mid-terraces,
 Flats, etc
- Zones of 1919-64, 1965-76, 1977-2002, etc
- Building variants created and adjusted by floor area,
 % glazing, wall construction.

Processing Information

Thermal demand

The Supply Side

- Wide range of generation technologies commercially available now and even wider range by 2050
- These have diverse operational characteristics and response to changing climate
 - need to capture these robustly
- Spatial pattern of generation deployment is important in credible scenarios
 - resource, economics, grid connection all have strong influence

E.G. Solar Radiation / PV Output

Baseline, relative change, and percentage change (from baseline) for 2050s medium emissions scenario with 50% probability

Baseline - Summer months

2050s Medium Emissions 50% probability change (Wm⁻²) Summer months

2050s Medium Emissions 50% probability change (%) Summer months

The Supply Side

The Supply Side

In conclusion we have...

- An approach for modelling an aggregated thermal demand profile for a selection of buildings
- A method for upscaling individual dwelling electrical demands to aggregated demands
- A tool emulating the effect of climate on building simulations
- A model for estimating the effect of climate on electricity transmission
- Method demonstrating the effect of climate on renewable generation
 - Wind, Solar, Hydro, Tidal, Wave

So now we just have to put them all together!!

P.F.G.Banfill@hw.ac.uk Gareth.Harrison@ed.ac.uk