Sustainability Research Institute

FACULTY OF ENVIRONMENT

Towards resource-efficient integrated infrastructure services; The role of end-users and policy

Katy Roelich and Christof Knoeri

ARCC network assembly 2014

Urban areas as systems: adapting for the future

Adapting [infrastructure business models] to climate change

- We need drastic change in energy and water provision and demand; especially in our urban areas
- Current business models are resistant to this change
- We need systemic action to encourage business model change; including from end-users and policy makers

- Plan for today
 - The role of end-users
 - The role of policy

UNIVERSITY OF LEEDS

Service-performance provision

Adapted from: Steinberger, Van Niel & Bourg 2009

"Ultimate service demand" or What do end-users really want?

Services categories	Service metrics
thermal comfort	usable floor area (UFA) at an average temperature
illumination	lumen per UFA perceived by the user
hygiene	textile cleaning: number of washing cycles/loads
	personal hygiene: number of showers, baths & tap uses
	human waste disposal: number of full & reduced toilet flushes
sustenance	food conservation: refrigerator and freezer volume
	cooking: number of meals; times of hob, oven, microwave & kettle
	use; water volume for nutrition
	food cleaning: number of dish washing cycles, sink use volume
	gardening: tap uses & water volume for irrigation
communication	entertainment: hours of equipment use
	home computing: hours of equipment use
passenger transport	commuting, business & education trips
	shopping, escort & personal trips
	leisure & other trips

Source: Knoeri, et al. forthcoming

Infrastructure integration at the end-user level

Supply chain socio-technical interaction UNIVERSITY OF LEEDS

Results – constraints from policy paradigm

Results – constraints from policy and regulation

Translating: to another sector or setting

Responses to constraints

Policy

- Reduce financial risk and uncertainty
- Widen scope and purpose of funding
- Increase intermediary support to increase capabilities and learning
- Provide best practice guidance and templates for contracts and technologies
- Improve integration between policy areas

Regulation

- Make access to electricity networks easier
- Make electricity markets more accessible to small scale providers
- Create market for energy saving as well as energy generation
- Create a functional approach to regulating smaller suppliers
- Allow longer contracts with regulated suppliers
- Incorporate social & environmental factors into cost benefit analysis

Conclusion

- Service-performance perspective offers potential to accelerate transition in energy and water provision from a throughput based economy to one based on demand management.
- Infrastructure services are integrated, diverse (multiple technologies), difficult to measure, and not yet well understood.
- Infrastructure services are embedded in a socio-technical system (or socio-ecological infrastructure system)
- Change requires engagement of end users and policy makers
- Barriers to scaling up service-based companies from regulation, capabilities and exclusion of non-monetary benefits

Thank you for your attention!

Contact: <u>k.e.roelich@leeds.ac.uk</u>

c.knoeri@leeds.ac.uk

Website: http://sure-infrastructure.leeds.ac.uk

Traditional view of infrastructure service supply chain

Active conversion technologies, passive context, and technology operation

Conversion devices and passive systems

"Service heterogeneity" or do we all want the same?

UNIVERSITY OF LEEDS

Bespoke quality delivery

End-users barriers for rapid adoption of efficient technologies

Knowledge gap

 lack of information about own demand levels, potential savings through efficient technologies and changes in usage behaviour

Adherence to habits and routines

 service consumption is embedded in routine activity determined by many factors, leading to lock-in of specific patterns of consumption

Inappropriate operation of technology

 individual behaviour has a strong influence on the operation of end-use technologies, and can limit their real-life performance

UNIVERSITY OF LEEDS

How supportive is current governance?

Result – governance analysis framework

