Modelling as a tool for Coastal Flood Risk Assessment

Thomas Prime

University of Liverpool,
School of Environmental Sciences

A. Plater, P. Knight, J. Brown

Case Study Site: Fleetwood in Lancashire

•9.68Mm2 of Inundation •12.2Mm3 of Flood Water

- •8.33Mm2 of Inundation
- •7.0Mm3 of Flood Water

- •12.75Mm2 of Inundation
- •14.0Mm3 of Flood Water

Red Area Flood Resilience measures ineffective, Green/Yellow areas Flood resilience effective

Cost of Projected Inundation Events

Scenario	Arable Land Cost (£M)	Housing Cost (£M)	Road Cost (£M)	Industrial Cost (£M)	Total Costs (£M)
Baseline	0.2	47.7	0.2	0.8	48.9
River Only	0.3	241.2	0.8	5.0	247.3
Wave Only	0.2	218.5	0.6	5.3	224.6
River & Waves	0.3	367.3	1.1	8.4	377.1