

Blue-Green Cities Delivering and Evaluating Multiple Flood Risk Benefits

Hydrologic and environmental attributes in

Water Cycle

Streetscape

Grey

Natural

and Blue-Green Cities

GREEN

Blue-Green Research Aim

Develop and rigorously evaluate strategies for managing flood risk that deliver multiple benefits as part of urban planning and renewal

J4M8, Edinburgh

Hebden Bridge

Wortley Beck, Leeds

The Dings, Bristol

Case Study City: Newcastle

International Collaborations

Portland, Oregon
Blue-Green Cities are working with:

Portland State

James Griffiths, David Higgitt, Faith Chan and Odette Paramor

Blue-Green Cities are working with Ningbo academics

EPSRC Studentship (Shaun Maskrey)

Bayesian networks as a tool for involving stakeholders in the participatory modelling and management of flood risk

1. Uncertainty

2a. Flood Inundation – CityCAT

Water depth map of **Ouseburn catchment** (area = 120km², cell size = 2m, cells = 30million). Storm event = 60 minutes, 100-year return period

2b. Sediment, morphology, habitats

AIM: assess sediment transport and debris dynamics within Blue-Green urban drainage networks and develop improved approaches to accounting for the risks and benefits associated with Blue-Green infrastructure.

PIT technology

2c. Retrofit SuDS – attitudes/behaviours

The Dings, Bristol (above), @Bristol (top-right), St Nicholas House, Bristol (bottom right)

3. FRM components and interfaces

- Develop tools and methodologies to represent urban FRM and Blue-Green networks within a single urban environment
- "System of systems" approach
- Examining interdependencies with wider urban infrastructure

4. Evaluation and synthesis of benefits

Aim: Develop procedures for the robust evaluation of the multiple functionalities of Blue-Green infrastructure components within FRM strategies

- Blue (flood) and non-flood (Green)
- Evaluate the relative significance of benefits in context specific locations
- Establish preference ratings
- Review current design procedures and make recommendations to the design guidance to enhance the most significant non-flood benefits

Danger to life

Damage

Maintenance

Hoang and Fenner (Submitted), modified after Fratini et al. (2012) and CIRIA's SUDS manual (2007)

Return Period

CWFA Research Objectives

Investigate wider system interactions and multiple benefits of Blue-Green infrastructure

3 step-approach

1.Benefit evaluation

2. Benefit significance:

incremental value added in a location-specific context; can benefits in discreet installation be leveraged by enhanced connectivity? (GIS-based)

3. Benefit preference

Benefit intensity-

cumulative spatial distribution of

based on the

benefits

5. Demo Study Identified flood risk (pluvial/ fluvial)?

Newcastle

Data availability

Change flood risk management strategies?

Newcastle City Council

FA

Northumbrian

Water

Natural England

Universities

Wildlife and

Rivers Trusts

Estates

Natural History

Society

Buy-in from <u>all</u> local stakeholders

Is Blue-Green infrastructure viable?

Developing a Blue-Green vision for Newcastle - Learning and Action Alliance (LAA)

A LAA is usually an open arrangement where participants create a Joint understanding of a problem and its possible solutions based on

rational criticism and coherence through **discussion**. It facilitates the identification of

innovative ideas for the solution of complex (wicked) problems outside the constraints of existing formal institutional settings.

Solutions or ideas are afterwards presented in formal inter-organisational **decision-making processes**.

June 12th meeting: "stock-take" of Newcastle BG initiatives

PhD Studentship

Participatory modelling using Bayesian networks

Location:

Hebden Bridge, West Yorkshire

Objectives:

Ensure local stakeholder knowledge, particularly about social processes, is utilised in flood risk modelling

To achieve this through a participatory approach that harnesses the utility of the Bayesian network technique

Acknowledgement

The research reported in this presentation is being conducted as part of the Blue-Green Cities Research Consortium with support from the:

- Engineering and Physical Sciences Research Council
- Northern Ireland Rivers Agency
- Environment Agency
- National Science Foundation
- City of Portland Bureau of Environmental Services
- Johnson Creek Watershed Council

1. Establishment

Aim, vision, context, stakeholders, focus, culture

2. Functioning

- Legitimacy
- Trust
- Innovation
- Leadership
- Decision makers

Terms of Reference - purpose, structure, rules

3. Sustainability

Active learning, communication, facilitation, characteristics, clear rewards

Clean Water For All (CWFA) 2014 A UK+US collaboration

Climate change and flood risk: understanding and communicating risk and uncertainty System interactions and multiple Sediment, contaminants, morphology and riparian restoration Runoff and flood simulation Community perceptions: the social dynamic Structuring and evaluating community priorities through participatory modelling

Case Study: Johnson Creek, Portland, OR

CWFA Research Objectives

- To develop a method for identifying the Relevant Dominant Uncertainties and the capacity for FRM strategies to be effective under different future scenarios
- To model Johnson Creek (with and without green streets) to understand the impacts of stormwater run-off on sediment and water quality

CWFA Research Objectives

- To explore the multiple perceived benefits of adopting a 'Blue-Green' approach to FRM, considering temporal changes in perceptions and behaviour
- Participatory modelling; where and when is it appropriate to use *Bayesian* networks to be used as a tool to support the participatory process?

