Indoor Air Quality as Affected by the Urban Environment

Jonathon Taylor CBES Research Group Bartlett School of Graduate Studies, UCL

June 11th, 2014

UK HOUSING STOCK

- An estimated 23.1 million dwellings in England
- People in the UK spend around 90% of their time indoors
- Around 60% of that time is spent in their homes
- Therefore, dwellings are an important modifier for population exposure to the external environment (weather, pollution, etc).

Current Projects

• AWESOME - Air pollution and WEather-related health impacts: methodological study based on Spatio-temporally disaggregated multi-pollutant models for present-day and future

BUILDING SIMULATION

1. Building Characteristics

2. Occupancy Behaviour

3. External Conditions

4. Pollutant Characteristics

≫

Dynamic Thermal Simulation (EnergyPlus)

Indoor/Outdoor Pollutant Ratios Absolute Indoor Concentrations

Indoor Air Quality as Affected by the Urban Environment ARCC Network Assembly, 10&11th, June 2014.

OUTLINE

Initial Research

AWESOME Project

- Existing building stock information
- Outdoor pollution levels
- Comparison of results between archetypes
- Mapped results
- Preliminary results for indoor sources
- Development of nationally representative housing stock

- Indoor/Outdoor ratios for pollution
- Pollution from indoor sources
- Overheating risk

INITIAL RESEARCH GREATER LONDON AUTHORITY

Develop a building stock model suitable to estimate indoor levels of pollution from outdoor sources

GIS Sources

English Housing Survey (EHS)

Standard Assessment Procedure (SAP)

- OS Address Layer 2
- The Geoinformation Group (Cities Revealed) Building Class Database
- Regular survey of around 17,000 dwellings in England
- Includes interview of occupants
- Representative subset have home surveyed by qualified surveyor, physical characteristics noted.
- Methodology for estimating the permeability of buildings based on characteristics derived from the EHS.

INITIAL RESEARCH LONDON ARCHETYPES

Indoor Air Quality as Affected by the Urban Environment

ARCC Network Assembly, 10&11th, June 2014.

UCL

INITIAL RESEARCH LONDON ARCHETYPES

Indoor Air Quality as Affected by the Urban Environment

ARCC Network Assembly, 10&11th, June 2014.

INITIAL RESEARCH LONDON ARCHETYPES

INITIAL RESEARCH OUTDOOR LEVELS OF POLLUTION

$PM_{2.5}$ chosen as pollutant to model

In London, $PM_{2.5}$ causes mortality equivalent of 4,267 deaths (2008) (Miller, 2010).

Modelled with spatial variation in background levels from DEFRA (2010) and temporal (time of day-month) from London Air (2014).

Penetration factor of 0.8 when windows closed, 1.0 when open.

PM₂₅ Concentrations lig/m³ 2010 18.5 10.7

Deposition rate 0.18h⁻¹

INITIAL RESEARCH: OUTCOMES

Example: I/O Ratios and average outdoor levels for bungalows over a year.

Key findings

- The I/O Ratio increases in summer if the windows are allowed to open when indoor temperature rise above thresholds.
- While I/O Ratios rise, the outdoor PM levels tend to fall during the summer.

INITIAL RESEARCH: OUTCOMES

Key findings

There an almost two-fold difference in I/O ratios between archetypes, indicating that buildings may have a large impact of population exposure to outdoor $PM_{2.5}$.

INITIAL RESEARCH: OUTCOMES

No Window Opening

Window Opening

Key findings

Modern flats have lower infiltration rates, meaning lower amounts of outdoor $PM_{2.5}$ indoors High density of flats in Central London may reduce exposure

Indoor Air Quality as Affected by the Urban Environment ARCC Network Assembly, 10&11th, June 2014.

LICL

INITIAL RESEARCH: INDOOR SOURCES - COOKING

Key findings

Trends when indoor sources are modelled are the opposite of what is observed with outdoor sources.

AWESOME: NATIONAL OVERHEATING AND IAQ

Develop a national building stock model suitable to estimate indoor levels of pollution from indoor and outdoor sources

English Housing Survey (EHS)

Homes Energy Efficiency Database

Standard Assessment Procedure (SAP)

- Regular survey of around 17,000 dwellings in England
- Includes interview of occupants
- Representative subset have home surveyed by qualified surveyor, physical characteristics noted.
- Continuously updated database of individual dwellings in UK from survey and installations data.
- Contains at least one piece of information from ~50% of UK dwellings
- Physical characteristics only (e.g. Wall type, window type)
- Methodology for estimating the permeability of buildings based on characteristics derived from the EHS.

UCL

AWESOME UK ARCHETYPES

Indoor Air Quality as Affected by the Urban Environment

ARCC Network Assembly, 10&11th, June 2014.

FUTURE WORK

- Adjust national I/O ratios by local levels of pollution to calculate absolute indoor pollution from outdoor sources.
- Metamodel to scale overheating results by more local temperatures.
- Match indoor pollution levels (indoor and outdoor sources) and overheating data with postcode health data, socioeconomic data.

REFERENCES

Taylor, J., Shrubsole, C., Davies, M., Biddulph, P., Das, P., Hamilton, I., . . . Oikonomou, E. (2014). The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources. Indoor Air.

Taylor, J., Davies, M., Mavrogianni, A., Biddulph, P., Das, P., Chalabi, Z., . . . Jones, B. (2014). The relative importance of input weather data for indoor overheating risk assessment in dwellings. Building and Environment, 76, 81-91.

Mavrogianni, A., Davies, M., Taylor, J., Biddulph, P., Das, P., Chalabi, Z., . . . Jones, B. (2014). The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments. Building and Environment, 78, 183-198.

Mavrogianni, A., Davies, M., Taylor, J., Oikonomou, E., Raslan, R., Biddulph, P., . . . Shrubsole, C. (2013). Assessing heat-related thermal discomfort and indoor pollutant exposure risk in purpose-built flats in an urban area.

Mavrogianni, A., Davies, M., Taylor, J., Oikonomou, E., Raslan, R., Biddulph, P., . . . Shrubsole, C. (2013). The unintended consequences of energy efficient retrofit on indoor air pollution and overheating risk in a typical Edwardian mid-terraced house.

The Bartlett School of Graduate Studies

Questions?

j.g.taylor@ucl.ac.uk

Indoor Air Quality as Affected by the Urban Environment ARCC Network Assembly, 10&11th, June 2014.