#### WHY EXISTING DESIGN STAGE TOOLS AND METHODOLOGIES ARE NOT PREVENTING OVERHEATING

Overheating and Indoor Air Quality in New Homes – 23<sup>rd</sup> June 2015

Susie Diamond - Inkling



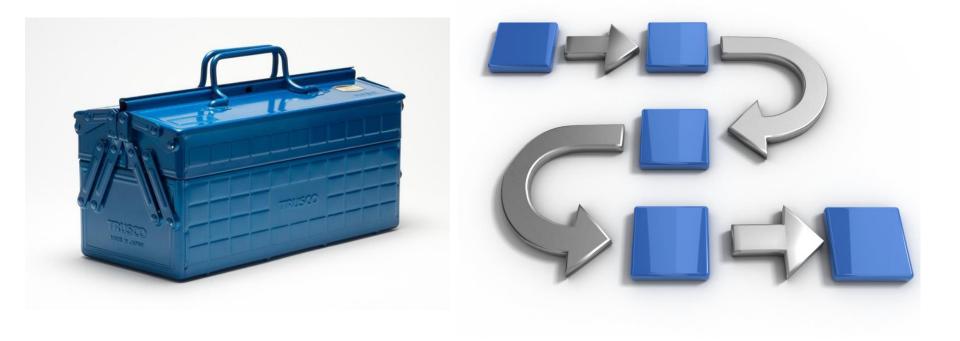
# Women in Engineering Day



#### • <u>#NWED</u>

- <u>#whatengineersdo</u>
- <u>#IAmAnEngineer</u>




#### Assessing Overheating risk – publication

- Zero Carbon Hub publication
- Co-authored by Inkling and Anastasia Mylona (ARCC and CIBSE)
- Part of report series and ongoing research

ASSESSING OVERHEATING RISK



## Tools and methodologies



## **Existing Methodologies**

- SAP
  - Single calculation for June, July and August using monthly averages for weather data
  - Single zone model
  - Easy to fudge
- CIBSE Guide A
  - Follows TM52 adaptive thermal comfort
  - Based on commercial buildings advice for dwellings: ??
- PHPP
  - Passive House Planning Package
  - Spreadsheet based
  - Uses bespoke internal gains but similar calc to SAP

## Evidence?





## Key Overheating risks

- Single aspect
- Limited ventilation
  - Restricted openings
  - Noisy environment
- Large areas of glazing





## What do we need?



- A stakeholder agreed methodology to follow:
  - Reliable
  - Cost-effective
  - Flexible
  - Understandable
- Not as easy as it first appears, but do-able



# My Opinion



- Two phased approach
- Triage risk level for each unit
- Run dynamic thermal modelling test on high risk only
- Define set of internal gains based on 'upper reasonable' limit
- Methodology based on adaptive thermal comfort possible focus on night time temps

## The End



#### Thank you for listening!

Find us at <u>www.inklingllp.com</u> @InklingLLP

