

ARIES: Energy Scenario requirements

5-6th Feb 2014, ARCC Scenarios Workshop

Dr David Jenkins Centre of Excellence in Sustainable Building Design Heriot-Watt University

ARIES

- Adaptation and Resilience In Energy Systems
- University of Edinburgh (supply-side) and Heriot-Watt University (demand-side)
- Modelling the effect of climate and future conditions on energy demand, supply and infrastructure
 - What problems might occur that are caused or exacerbated by climate change?

Synthesizing electrical demand profiles

- Individual dwelling demand profiles show clear link with activity and technologies
- Multi-dwelling demand profiles show periods of interest/concern for an energy supplier
- Can a method utilise both of the above?
 - And demonstrate the effect of changing specific parameters on aggregated demand profiles
 - Particularly a challenge as high-resolution dwelling demand profiles are difficult to obtain in great number

Synthesizing electrical demand profiles

Diversity effect in electrical demand profiles

Do synthetic aggregated profiles mimic real data?

Aggregated thermal demand profiles

- Developed a method for dynamically simulating large numbers of dwellings (in IES-VE)
- In effect, a Dynamic Local-Scale Stock model (DLSSM)
 - Accounts for important aspects of building physics but in way that is suitable for extrapolation
 - Can look at effect of, e.g., large-scale changes in heating technology (in warmer climate)

Processing Information

Thermal demand

For this we need quite specific "scenarios"...

- Archetypes of dwellings
 - Scottish Building Stock from Housing Surveys, and how these might transform in the future
- Apply theses scenarios to "zones" of 500-6000 homes
- Such bottom-up scenarios do not necessarily need to be paired with top-down scenarios
 - But we need to make sure they do not clash with these overarching scenarios
 - e.g. avoid high heat pump usage in higher grid carbon intensity scenarios

The Supply Side

- Wide range of generation technologies commercially available now and even wider range by 2050
- These have diverse operational characteristics and response to changing climate
 - need to capture these robustly
- Spatial pattern of generation deployment important in credible scenarios
 - resource, economics, grid connection have strong influence

Solar Radiation

Baseline, relative change, and percentage change (from baseline) for 2050s medium emissions scenario with 50% probability

Baseline - Summer months

2050s Medium Emissions 50% probability change (Wm⁻²) Summer months

2050s Medium Emissions 50% probability change (%) Summer months

Solar PV Output

Percentage change for 2080s high emissions scenario (10%, 50% & 90% probabilities)

www.hw.ac.uk

What we have...

- An approach for modelling an aggregated thermal demand profile for a selection of buildings
- A method for upscaling individual dwelling electrical demands to aggregated demands
- Tool emulating effect of climate on building sims
- A model for estimating the effect of climate on electricity transmission
- Method demonstrating effect of climate on renewable generation
 - Wind, Solar, Hydro, CCGT, Nuclear, Coal, Tidal, Wave (nearly....)

The effect of scenarios on demand...

Energy efficient lighting, e.g. LED?

Charge cycle of electric vehicles?

Continuing rise in consumer electronics?

Climate Change?

The need to define an external scenario

- We have bottom-up demand modelling methods
 - Millions of possibilities of how these are applied so specific case-studies and scenarios are needed
- Geographical breakdown of
 - Generation
 - Infrastructure
 - Demand
- Highlight regionally-specific issues

The Supply Side

The Supply Side

The need to define an external scenario

- Should we define scenarios that are:
 - Likely to happen?
 - Describe a mid-range of possibilities?
 - Relatively extreme scenarios that test the limits of the systems being studied? – What breaks and when?
- Quite possible to point to a scenario that "fails" but is not likely to happen
- Can assign probability to climate scenarios but more arbitrary for non-climate parameters

An example

- Climate: UKCP'09, Medium-emission,
- Location: London, Regional info
- Building types: % mix of low/zero-carbon dwellings
- Technology: % use of heat-pumps in domestic and non-domestic sectors
- Onsite generation: Assumed GW/yr growth of PV
- Demand response: Use of controls/storage, DSM and micro-grids to allow demand to follow supply
- Offsite generation: Assumed mix of renewables Ambition

Climate

Demand-side drivers

Energy generation

Ensure these compliment each other

Bottom-up descriptions

Building stock

Behaviour

Micro-gen

HVAC tech